
Basic Training
Editors: Richard Ford, rford@se.fit.edu

Michael Howard, mikehow@microsoft.com

	 Published	by	the	ieee	ComPuter	soCiety							n						1540-7993/07/$25.00	©	2007	ieee							n						ieee	seCurity	&	PrivaCy	 71	

becoming	a	security	expert

W
henever I present papers at software de-

velopment conferences, I hear the same

question every time: “How do you try

to learn security?” I could be flippant

and say, “Do or do not, there is no try,” but there are some

approaches that software engi-
neers—whether in design, devel-
opment, or testing—can take to
learn more about security.

Instead of being flip, I follow
up with two questions: “What
area of the development process
are you most interested in?” and
“Why do you want to learn secu-
rity?” The most common reply to
the first question is development,
and the majority answer to the
second is, “Because I know noth-
ing about the subject.” The sec-
ond answer isn’t a surprise to me,
but it’s disturbing, so I’ll rant for
a moment, even at the risk of in-
sulting your intelligence.

The world is amazingly con-
nected today—just about every-
thing depends on some form of
connectivity, which brings with
it not only productivity enhance-
ment but also potential danger
because cyberattackers can exploit
it. This is why the answer to my
second question is so alarming.
At Microsoft, we hire thousands
of engineers each year—some
straight from school, others from
academia, government, and indus-
try—and the percentage of people
who understand how to build se-
cure systems is miserably slim. I
congratulate anyone who wants to
learn more about security because

chances are they’re trying to fill a
critical void in their skill set and
security is a critical skill that’s in
short supply. Who knows, adding
security to their resumés might
make them more attractive to po-
tential employers!

General learnings
Anyone involved in the software
industry should learn a few facts
and skills that relate to software
security. Let’s take a look at each
in more detail.

No single “magic tool”
will make you secure
This is the classic “There is no sil-
ver bullet” mantra, restated, and
that’s exactly why IEEE Security &
Privacy has a somewhat tongue-in-
cheek Silver Bullet column. Allow
me to be a little more forceful:
there’s no one single solution that
will fix your security woes. It
takes a more holistic approach that
includes education, secure design,
updated development toolsets,
good testing techniques, and se-
curity responses. The Microsoft
Security Development Lifecycle
is one example of an end-to-
end set of process improvements
that foster more secure software
(www.microsoft.com/MSPress/
books/8753.asp).

Stay ahead of attackers
The security environment changes
constantly. This is one of the rea-
sons we mandate ongoing security
education at Microsoft; what you
learned last year is probably only a
subset of what you know this year.
Attackers come up with new at-
tacks and defenders come up with
new defenses. Sometimes, it’s the
other way around as attackers at-
tempt to circumvent unexpected
defenses. Here’s the net message: if
you create software, it’s likely at-
tackers will prod and probe your
product, and they’ll do it with the
latest attack techniques, not just at-
tacks from yesteryear. Therefore,
you should understand the threat
landscape. I like to tell people to
do a couple of things. First, make
a point of reading good books on
software security. Next, subscribe
to a security mailing list or news-
group. One of the most popular is
bugtraq (www.securityfocus.com).
From experience, there’s a lot of
noise on bugtraq, so you’ll have to
do some filtering to find the gems
that crop up every so often.

It’s asymmetric!
A few years ago, I coined a phrase
that appeared in Writing Secure Code,
2nd Edition (Microsoft Press, 2002):
“the attacker’s advantage and the
defender’s dilemma.” Without go-
ing into detail, here are the four
principles behind the phrase:

Defenders must defend all
points; attackers can choose the
weakest one.
Defenders can defend only against
known attacks; attackers can probe
for unknown vulnerabilities.

•

•

Michael
howard

Microsoft

Basic Training

72	 ieee	seCurity	&	PrivaCy							n						January/February	2008

Defenders must be constantly vig-
ilant; attackers can strike at will.
Defenders must play by the rules;
attackers can play dirty.

James Whittaker, a security ar-
chitect at Microsoft, offers a fifth:

Attackers can remain anony-
mous. Attackers can take your
code offline and spend as much
time as they want looking for
vulnerabilities.

The moral of this lesson is that no
matter how hard you try, attackers
will, in the long run, always have
the upper hand. It’s a simple fact
of life, not an excuse. Security is
humans pitted against humans.
Therefore, it’s critical that you im-
prove your code’s security posture
at the design, implementation, and
testing levels.

Critical design
For some reason, the software
industry fixates on coding bugs.
Plenty of tools exist that will help
you find coding bugs, but few, if
any, focus on design vulnerabili-
ties. Yet, many security issues are
due to an insecure design, or more
problematic, a design might have
been fine five years ago, but is in-
secure today.

Secure design principles
You can read about secure design
principals in several security texts,
but there’s nothing quite like ap-
plying the principals to a product
you have built or will build. The
classic secure design text is Jerome
Saltzer and Michael Schroeder’s
The Protection of Information in Com-
puter Systems (1975; http://web.mit.
edu/Saltzer/www/publications/
protection). It’s been around for
more than a quarter century, yet
its spirit is still true today. At the
end of one of my secure design
classes at Microsoft, I ask students
to think of the products they help
create—perhaps Microsoft Word’s
spell checker, a networked service

•

•

•

in Windows, or an Internet-facing
game—and then ask them to im-
prove their product’s features by
applying all of Saltzer and Schro-
eder’s principles. The main rea-
son for doing this is to bring the
principles into focus. In my ex-
perience, software engineers and
designers tend to learn by doing
rather than just reading. With that
said, read up in the core secure
design principles and then, even if
it’s only as a mental exercise, ap-
ply them to your product. Next,
consider how you would prioritize
the changes into the product that
these principles demand.

Understand the
risk you face
If your code is open to the Inter-
net, it’s open to attack. Therefore,
it’s imperative that you understand
what parts of the application at-
tackers might attempt to compro-
mise. This is the reason Microsoft
requires product groups to per-
form threat analyses of their appli-
cations—it lets the central security
group and the development teams
determine whether they have ap-
propriate mitigations and defenses
in place to protect both the applica-
tions and customers in the event of
attack. Microsoft’s Adam Shostack
recently posted numerous articles
about the threat modeling process
and how Microsoft is improving it
(http://blogs.msdn.com/sdl).

Understand
what’s exposed
At Microsoft, we call the idea of
what’s exposed attack surface analy-
sis,1 or more simply, how much
code is open to untrusted users.
Its goal is to reduce the severity
of potential vulnerabilities. Inter-
net Information Services (IIS) 6, a
set of services for Web servers, for
example, has a great security track
record. Since its release in 2003,
Microsoft has issued only two se-
curity bulletins for it.2,3 However,
both of these security bugs are
common to IIS 5.1 and IIS 5.0, yet

they’re lower in severity in IIS 6
because the code isn’t installed by
default. Another example is the
security vulnerability in the Win-
dows Local Security Authority
Subsystem Service (LSASS) pro-
cess that led to the Sasser worm.
The coding vulnerability is pres-
ent in Windows Server 2003, yet
Windows Server 2003 computers
weren’t affected by Sasser because
the networking end point is only
accessible to local administrators.
In Windows 2000, however, the
end point is available to remote
and anonymous users (attackers).
Attack surface analysis is an ac-
knowledgment that you can never
have 100 percent secure code—it
might be secure today, but that
could change tomorrow.

Critical
developer skills
I want to keep this developer sec-
tion short so as not to muddy the
waters with too much informa-
tion. In my opinion, the single
most important skill developers
can ever understand is the no-
tion that data is bad—so bad in
fact, that it can lead to bad secu-
rity vulnerabilities, such as buf-
fer overruns, SQL injection, and
cross-site scripting, to name a
few.4 If your application consumes
untrusted data, such as remote and
anonymous input, then that data
should be treated as toxic waste
until it’s analyzed and validated by
well-written code in the applica-
tion. When performing a code re-
view,5 it’s important to follow this
tainted data until it’s validated. In
short, never trust data.

Critical tester skills
Of all the possible security-related
testing techniques, nothing comes
close to fuzz testing6,7 for finding
reliability and security bugs.8 Fuzz
testing is the simple act of building
malformed data and throwing it at
a parser or network parser with
the sole intention of making appli-
cations crash. Remember, not all

Basic Training

	 www.computer.org/security/							n						ieee	seCurity	&	PrivaCy	 73	

crashes are the same; a crash might
very well be just a crash. But some
crashes are special because, with a
little more work, they could lead
to code execution. The moral of
this story, and a critical skill that
everyone in the development team
should understand, is that crashes
shouldn’t be written off as mere
crashes. Rather, they should be
investigated to make sure there’s
no chance of code execution. But
err on the side of assuming a crash
could lead to code execution.

A small number of skills ex-
ist that anyone in the soft-

ware development business can
learn to improve software secu-
rity. Whether you’re a developer,
architect, or tester, it’s important
that you understand the nature of
the constantly evolving security
landscape and build defenses into
applications at the design phase,
never trust input, and then verify
that the input handling is robust
in the face of intentionally mal-
formed data. Knowing these skills
and applying them will lead to
more secure software. And that’s
good for everyone.

Acknowledgments
Thanks to Steve Lipner, James Whit-
taker, and Adam Shostack for pro-
viding feedback, corrections, and
additional material for this article.

References
M. Howard, “Mitigate Security
Risks by Minimizing the Code
You Expose to Untrusted Users,”
MSDN Magazine: The Microsoft Jour-
nal for Developers, Nov. 2004; http://
msdn.microsoft.com/msdnmag/
i s sues/04/11/AttackSur face/
default.aspx.
Microsoft Security Bulletin
MS06-034, “Vulnerability in Mi-
crosoft Internet Information Ser-
vices Using Active Server Pages
Could Allow Remote Code Ex-
ecution,” 11 July 2006; www.
microsoft.com/technet/security/

1.

2.

Bulletin/MS06-034.mspx.
Microsoft Security Bulletin
MS04-030, “Vulnerability in
WebDAV XML Message Han-
dler Could Lead to a Denial of
Service,” 12 Oct. 2004; www.
microsoft.com/technet/security/
Bulletin/MS04-030.mspx.
M. Howard, “A Security Lesson
that Transcends Programming
Language and Operating System
Religion,” 22 June 2007; http://
blogs.msdn.com/sdl/archive/
2007/06/22/a-security-lesson
-that-transcends-programming
-language-and-operating-system
-religion.aspx.
M. Howard, “A Process for Per-
forming Security Code Reviews,”
IEEE Security & Privacy, vol. 4, no.
4, 2006, pp. 74–79.
S. Lambert, “Fuzz Testing at Mi-
crosoft and the Triage Process,”
20 Sept. 2007; http://blogs.msdn.
com/sdl/archive/2007/09/20/
fuzz-test ing-at-microsoft-and
-the-triage-process.aspx.
J. Whittaker, “Testing in the
SDL,” 24 May 2007; http://blogs.
msdn.com/sdl/archive/2007/
05/24/testing-in-the-sdl.aspx.
J. Whittaker, “Reliability vs.
Security,” 7 Dec. 2007; http://
blogs.msdn.com/sdl/archive/
2 0 0 7/12 / 0 7/r e l i a b i l i t y -v s
-security.aspx.

Michael Howard is a principal secu-
rity program manager in the Security
Engineering group at Microsoft. His re-
search interests include secure design,
development and testing policies, and
best practice. Howard is the coauthor
of Writing Secure Code for Windows
Vista, The Security Development Life-
cycle, Writing Secure Code (Microsoft
Press), and 19 Deadly Sins of Software
Security (McGraw Hill). Contact him at
mikehow@microsoft.com.

3.

4.

5.

6.

7.

8.

Interested in writing for this
department? Please contact
editors Richard Ford (rford@
se.fit.edu) and Michael Howard
(mikehow@microsoft.com).

Su
bs

cr
ib

e
N

ow
!

F E A T U R I N G

V I S I T
www.computer.org/pervasive/

subscribe.htm

I N 2 0 0 8
• Implantable Electronics

• Activity-Based Computing

• The Hacking Tradition

• Pervasive User-Generated
Content

del ivers the la tes t deve lopments

in pervas ive , mobi le , and

ubiqui tous comput ing. With

content that ’s access ib le and

usefu l today, the quarter ly

publ icat ion acts as a cata lys t for

rea l i z ing the v i s ion of pervas ive

(or ubiquitous) computing Mark

Weiser descr ibed more than a

decade ago—the creat ion of

env i ronments saturated wi th

comput ing and wire l e s s

commun ica t ion ye t gracefu l ly

integrated wi th human users .

IEEE
Pervasive
Computing

